Article ID Journal Published Year Pages File Type
1419211 Carbon 2006 7 Pages PDF
Abstract
The possibility of growing carbon nanotubes in the immediate proximity of microstructures on a surface in a controllable way, with a high degree of control over the inclination angle, is demonstrated. Carbon nanotubes synthesised in a plasma-enhanced chemical vapour deposition process are known to grow in the direction of the electrical field. Geometrical features of the conductive substrate holder are used to distort the electrical field, thereby controlling the inclination angle of the carbon nanotubes locally. It is shown that the geometrical features of the microstructures on the silicon wafer do not interfere substantially with the resulting inclination angle. Finite element simulations show good agreement with the experimental observations, thus this is a route towards integrating carbon nanotubes with a special inclination angle on microstructures.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , ,