Article ID Journal Published Year Pages File Type
1419518 Carbon 2005 12 Pages PDF
Abstract

Temperature-programmed reduction (TPR) and CO adsorption microcalorimetry along with the catalytic behaviour in the n-butane/H2 test reaction were performed in order to determine the specific interactions of Ru nanoparticles supported on different carbon materials. Aspects such as the porous structure and surface chemistry (presence and elimination of surface oxygen functional groups) of the carbon material, or the effect of the metal precursor (e.g. presence of residual chlorine) on the final metal dispersion and on the surface structure of the Ru nanoparticles have been studied.The results obtained confirm that surface oxidation of the support along with the nature of the Ru precursor affects the distribution of the metal precursor over the support (and, consequently, the final ruthenium dispersion) and also the surface site distribution. Besides, elimination of the surface oxygen functional groups of the carbon material, during the reduction treatments of the fresh catalyst samples, leads to surface reconstructions on the Ru nanoparticles that seem to expose different crystallographic planes. The presence of residual chlorine leads to electron deficient Ru sites, and this modifies the CO chemisorption heats and affects the catalytic properties in the n-butane/hydrogen test.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,