Article ID Journal Published Year Pages File Type
1419636 Carbon 2006 8 Pages PDF
Abstract

The adsorption of molecular and atomic hydrogen as well as other molecules in the atmosphere on vacancies in the (0 0 0 1) graphite surface are investigated using density functional theory. Atomic hydrogen adsorbs with energies ranging from 4.7 to 2.3 eV. The validity of the model is confirmed by the good agreement between calculated vibrational spectra and those of high-resolution electron energy loss spectroscopy. It is shown that molecular hydrogen dissociates with a barrier of 1.1 eV on this model system. Water and oxygen also dissociate with respective barriers of 1.6 and 0.2 eV. Carbon dioxide and nitrogen have no interaction with the defect whereas carbon monoxide is incorporated into the vacancy with an activation energy of 1.5 eV. A comparison is made with the reactivity of graphene edges, both zigzag and armchair.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, ,