Article ID Journal Published Year Pages File Type
1420543 Dental Materials 2015 8 Pages PDF
Abstract

•MDP can establish a chemical bond with zirconia and is influenced by the pH at the Y-TZP surface.

ObjectivesIdentification of the mechanism of chemical coupling of a phosphate ester monomer to zirconia via a computational modeling approach enables materials scientists to design new coupling agents that can resist hydrolytic degradation of bonds made by methacrylate resins to zirconia. We investigated the possibility of chemical bonding between 10-methacryloyloxydecyldihydrogenphosphate (MDP) and tetragonal zirconia, and the effect of pH reaction conditions on such prospective chemical bonds.MethodsA tetragonal zirconia crystal model was created. An “Our-own N-layered integrated molecular orbital and molecular mechanics” (ONIOM) method was used to simulate two potential configurations of the MDP–ZrO2 system: double-coordinate and single-coordinate. Thermodynamic calculations were used to ascertain if the reaction could proceed spontaneously and to compare the stability of the two possible configurations. Short-term testing of shear bond strength (SBS) was done to evaluate bonding improvement of MDP to alumina-sandblasted zirconia surfaces in neutral, acidic or alkaline environments.ResultsDigital models of coordinate bonds between MDP and tetragonal zirconia were constructed. Thermodynamic calculations indicated that the Gibbs free energy for forming double-coordinate and single-coordinate configurations were −461.2 kJ/mol and −450.9 kJ/mol, respectively. Equilibrium constants for the double-coordinate and single-coordinate configurations were 6.4 × 1080 and 9.8 × 1078, respectively. Application of MDP in alkaline conditions showed the highest SBS, whereas acid conditions resulted in lower SBS.SignificanceMDP can establish a “true” chemical bond with zirconia spontaneously. The double-coordinate configuration was identified to be more energetically favorable than the single-coordinate configuration for the coupling of MDP to zirconia. Alkaline conditions may positively affect formation of MDP–ZrO2 coordination bonds.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (239 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , ,