Article ID Journal Published Year Pages File Type
1420933 Dental Materials 2014 6 Pages PDF
Abstract

ObjectiveTo test the following hypotheses: (1) degree of conversion (DC) and polymerization stress (PS) increase with composite temperature (2) reduced light-exposure applied to pre-heated composites produces similar conversion as room temperature with decreased PS.MethodsComposite specimens (diameter: 5 mm, height: 2 mm) were tested isothermally at 22 °C (control), 40 °C, and 60 °C using light-exposures of 5 or 20 s (control). DC was accessed 5 min after light initiation by FTIR at the specimen bottom surface. Maximum and final PS were determined, also isothermally, for 5 min on a universal testing machine. Non-isothermal stress was also measured with composite maintained at 22 °C or 60 °C, and irradiated for 20 s at 30 °C. Data were analyzed using two-way ANOVA/Tukey and Student's t-test (α = 5%).ResultsBoth DC and isothermal maximum stress increased with temperature (p < 0.001) and exposure duration (p < 0.001). Isothermal maximum/final stress (MPa) were 3.4 ± 2.0b/3.4 ± 2.0A (22 °C), 3.7 ± 1.5b/3.6 ± 1.4A (40 °C) and 5.1 ± 2.0a/4.0 ± 1.6A (60 °C). Conversion values (%) were 39.2 ± 7.1c (22 °C), 50.0 ± 5.4b (40 °C) and 58.5 ± 5.7a (60 °C). The reduction of light exposure duration (from 20 s to 5 s) with pre-heated composite yielded the same or significantly higher conversion (%) than control (22 °C, 20 s/control: 45.4 ± 1.8b, 40 °C, 5 s s: 45.1 ± 0.5b, 60 °C, 5 s s: 53.7 ± 2.7a, p < 0.01). Non-Isothermal conditions showed significantly higher stress for 60 °C than 22 °C (in MPa, maximum: 4.7 ± 0.5 and 3.7 ± 0.4, final: 4.6 ± 0.6 and 3.6 ± 0.4, respectively).Clinical significance: Increasing composite temperature allows for reduced exposure duration and lower polymerization stress (both maximum and final) while maintaining or increasing degree of conversion.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , ,