Article ID Journal Published Year Pages File Type
1421192 Dental Materials 2013 9 Pages PDF
Abstract

ObjectivesTo investigate the crystalline phases, morphological features and functional groups on the surface of sintered Y:TZP/TiO2 composite ceramics before and after the application of a biomimetic bone-like apatite layer. The effect of TiO2 content on the composite's characteristics was also evaluated.MethodsSamples of Y:TZP containing 0–30 mol% TiO2 were synthesized by co-precipitation, followed by filtration, drying and calcination. The powders were uniaxially pressed and sintered at 1500 °C/1 h. To obtain biomimetic coatings the samples were exposed to sodium silicate solution and then to a concentrated simulated body fluid solution. The surfaces, before and after coating, were characterized by diffuse reflectance infrared Fourier transformed spectroscopy, X-ray diffraction analysis and scanning electron microscopy.ResultsThe surfaces of all Y:TZP/TiO2 samples were covered with a dense and uniform calcium phosphate layer with a globular microstructure. This layer was crystalline for specimens with 30% of TiO2 and amorphous for specimens with 0 and 10% of TiO2. Chemical analysis indicated that this layer was composed of type A carbonate apatite. Among the materials tested, the composite with 10% of TiO2 showed the best overall chemical and physical features, such as higher density and more cohesive amorphous apatite layer.SignificanceY-TZP-based materials obtained in the present investigation by means of the successful association of a calcium phosphate biomimetic layer with small amounts TiO2 should be further explored as an option for ceramic dental implants with improved bioactivity.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , ,