Article ID Journal Published Year Pages File Type
1422160 Dental Materials 2011 7 Pages PDF
Abstract

Objective. This study reports real time neutron diffraction on the Empress II glass-ceramic system.Methods. The commercial glass-ceramics was characterized by real time neutron diffraction, 31P and 29Si solid-state MAS-NMR, DSC and XRD.Results. On heating, the as-received glass ceramic contained lithium disilicate (Li2Si2O5), which melted with increasing temperature. This was revealed by neutron diffraction which showed the Bragg peaks for this phase had disappeared by 958 °C in agreement with thermal analysis. On cooling lithium metasilicate (Li2SiO3) started to form at around 916 °C and a minor phase of cristobalite at around 852 °C. The unit cell volume of both Li-silicate phases increased linearly with temperature at a rate of +17 × 10−3 Å3.°C−1. Room temperature powder X-ray diffraction (XRD) of the material after cooling confirms presence of the lithium metasilicate and cristobalite as the main phases and shows, in addition, small amount of lithium disilicate and orthophosphate. 31P MAS-NMR reveals presence of the lithiorthophosphate (Li3PO4) before and after heat treatment. The melting of lithium disilicate on heating and crystallisation of lithium metasilicate on cooling agree with endothermic and exotermic features respectively observed by DSC. 29Si MAS-NMR shows presence of lithium disilicate phase in the as-received glass-ceramic, though not in the major proportion, and lithium metasilicate in the material after heat treatment. Both phases have significantly long T1 relaxation time, especially the lithium metasilicate, therefore, a quantitative analysis of the 29Si MAS-NMR spectra was not attempted.Significance. The findings of the present work demonstrate importance of the commercially designed processing parameters in order to preserve desired characteristics of the material. Processing the Empress II at a rate slower than recommended 60 °C min−1 or long isothermal hold at the maximal processing temperature 920 °C can cause crystallization of lithium metasilicate and cristobalite instead of lithium disilicate as major phase.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , ,