Article ID Journal Published Year Pages File Type
1422206 Dental Materials 2010 12 Pages PDF
Abstract

ObjectiveTo compare resin–dentin bond strengths and the micropermeability of hydrophobic vs. hydrophilic resins bonded to acid-etched or EDTA-treated dentin, using the ethanol wet-bonding technique.MethodsFlat dentin surfaces from extracted human third molars were conditioned before bonding with: 37% H3PO4 (15 s) or 0.1 M EDTA (60 s). Five experimental resin blends of different hydrophilicities and one commercial adhesive (SBMP: Scotchbond Multi-Purpose) were applied to ethanol wet-dentin (1 min) and light-cured (20 s). The solvated resins were used as primers (50% ethanol/50% comonomers) and their respective neat resins were used as the adhesive. The resin-bonded teeth were stored in distilled water (24 h) and sectioned in beams for microtensile bond strength testing. Modes of failure were examined by stereoscopic light microscopy and SEM. Confocal tandem scanning microscopy (TSM) interfacial characterization and micropermeability were also performed after filling the pulp chamber with 1 wt% aqueous rhodamine-B.ResultsThe most hydrophobic resin 1 gave the lowest bond strength values to acid-etched dentin and all beams failed prematurely when the resin was applied to EDTA-treated dentin. Resins 2 and 3 gave intermediate bond strengths to both conditioned substrates. Resin 4, an acidic hydrophilic resin, gave the highest bond strengths to both EDTA-treated and acid-etched dentin. Resin 5 was the only hydrophilic resin showing poor resin infiltration when applied on acid-etched dentin.SignificanceThe ethanol wet-bonding technique may improve the infiltration of most of the adhesives used in this study into dentin, especially when applied to EDTA-treated dentin. The chemical composition of the resin blends was a determining factor influencing the ability of adhesives to bond to EDTA-treated or 37% H3PO4 acid-etched dentin, when using the ethanol wet-bonding technique in a clinically relevant time period.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , , ,