Article ID Journal Published Year Pages File Type
1424327 Journal of Controlled Release 2012 10 Pages PDF
Abstract

Micromolecular agents that block tumor development and metastasis hold great promise as cancer-targeted therapies. Tumor molecular targeted peptide 1 (TMTP1) was previously shown to target primary tumors and metastatic foci specifically. In this study, a group of composite peptides were incorporated to TMPT1. The NF-κB essential modulator-binding domain (NBD), and the trans-activator of transcription (TAT) peptide, were synthesized to enhance the targeted anti-tumor effects of TMTP1. TMTP1-NBD did not exhibit strong affinity to tumor cells as we had expected. Conjugating TAT with TMTP1-NBD ameliorated the poor hydrophilicity and negative charge of TMTP1-NBD. Therefore TMTP1-TAT-NBD displayed strong affinity and anti-tumor effects as we expected in vivo and in vitro. Interestingly cytoplasmic glycogen accumulation as well as apoptosis was observed in TMTP1-TAT-NBD treated PC-3M-1E8 cells. The downstream signaling pathways including AKT, GSK-3β, IκBα and NF-κB activity were verified to decrease by TMTP1-TAT-NBD. The pharmacokinetics and distribution of TMTP1-TAT-NBD in MDA-MB-231 tumor-bearing mice model provided some evidence for safety of the composite peptide, which showed the fluorescence of the peptide peaked in the tumor 6 h after injection, with little fluorescence detected in normal organs except for very weak fluorescence in kidney. In conclusion, TMTP1-TAT-NBD may be a promising targeted anti-tumor agent for primary tumor and metastatic foci, which enhances the anticancer effects through inhibiting the AKT/GSK-3β/NF-κB pathway comparing with TMTP1.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (173 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , , , , , , , , , , ,