Article ID Journal Published Year Pages File Type
1425824 Journal of Controlled Release 2010 10 Pages PDF
Abstract

The design of delivery vehicles that are stable in circulation but can be activated by exogenous energy sources is challenging. Our goals are to validate new imaging methods for the assessment of particle stability, to engineer stable and activatable particles and to assess accumulation of a hydrophilic model drug in an orthotopic tumor. Here, liposomes were injected into the tail vein of FVB mice containing bilateral Met-1 tumors and imaged in vivo using microPET and optical imaging techniques. Cryo-electron microscopy was applied to assess particle shape prior to injection, ex vivo fluorescence images of dissected tissues were acquired, excised tissue was further processed with a cell-digest preparation and assayed for fluorescence. We find that for a stable particle, in vivo tumor images of a hydrophilic model drug were highly correlated with PET images of the particle shell and ex vivo fluorescence images of processed tissue, R2 = 0.95 and R2 = 0.99 respectively. We demonstrate that the accumulation of a hydrophilic model drug is increased by up to 177 fold by liposomal encapsulation, as compared to accumulation of the drug at 24 hours.

Graphical abstractCombining PET and optical imaging is useful in the assessment and design of temperature-sensitive vehicles by allowing real-time monitoring of both the aqueous core and the lipid bilayer.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , , , ,