Article ID Journal Published Year Pages File Type
1425873 Journal of Controlled Release 2010 7 Pages PDF
Abstract

To address the limitations of conventional influenza vaccine manufacturing and delivery, this study investigated administration of virus-like particle (VLP) influenza vaccine using a microneedle patch. The goal was to determine if skin immunization with influenza VLP vaccine using microneedles enables dose sparing. We found that low-dose influenza (A/PR/8/34 H1N1) VLP vaccination using microneedles was more immunogenic than low-dose intramuscular (IM) vaccination and similarly immunogenic as high-dose IM vaccination in a mouse model. With a 1 μg dose of vaccine, both routes showed similar immune responses and protective efficacy, with microneedle vaccination being more effective in inducing recall antibody responses in lungs and antibody secreting cells in bone marrow. With a low dose of vaccine (0.3 μg), microneedle vaccination induced significantly superior protective immunity, which included binding and functional antibodies as well as complete protection against a high dose lethal infection with A/PR/8/34 virus, whereas IM immunization provided only partial (40%) protection. Therefore, this study demonstrates that microneedle vaccination in the skin confers more effective protective immunity at a lower dose, thus providing vaccine dose-sparing effects.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,