Article ID Journal Published Year Pages File Type
1426079 Journal of Controlled Release 2009 6 Pages PDF
Abstract

Macromolecular nitric oxide (NO) donors possessing the ability to target a specific type of liver cells were developed for delivering NO to the liver. Six NO molecules were covalently bound to mannosylated (Man) or galactosylated (Gal) bovine serum albumin (BSA) through an S-nitrosothiol linkage to obtain Man-poly SNO-BSA and Gal-poly SNO-BSA, respectively. The carrier parts of Man-poly SNO-BSA and Gal-poly SNO-BSA predominantly accumulated in the liver after intravenous injection in mice. In an ischemia/reperfusion injury mouse model, in which hepatic injury was induced by occluding the portal vein for 15 min followed by a 6 h reperfusion, the elevation of plasma alanine aminotransferase and aspartate aminotransferase levels was significantly inhibited by a bolus intravenous injection of Man-poly SNO-BSA or Gal-poly SNO-BSA, just before the start of reperfusion. In marked contrast, S-nitroso-N-acetyl penicillamine and NO-conjugated BSA, two classical S-nitrosothiols, had no statistically significant effects on the serum levels of the markers. The released NO in mouse liver was detected by electron spin resonance spectrometry only in the liver of mice receiving Man-poly SNO-BSA or Gal-poly-SNO-BSA. These findings indicate that Man-poly SNO-BSA and Gal-poly SNO-BSA are promising compounds for preventing hepatic ischemia/reperfusion injury by delivering pharmacologically active NO to the liver.

Graphical abstractNew macromolecular NO donors, Man-poly SNO-BSA and Gal-poly-SNO-BSA, each of which is targeted to liver nonparenchymal cells or hepatocytes, respectively, were highly effective in preventing hepatic ischemia reperfusion injury.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,