Article ID Journal Published Year Pages File Type
1426146 Journal of Controlled Release 2009 9 Pages PDF
Abstract

A series of chitosan-based oligoamine polymers was synthesized from N-maleated chitosan (NMC) via Michael addition with diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and linear polyethylenimine (Mn 423), respectively. The resulted polymers exhibited well binding ability to condense plasmid DNA to form complexes with size ranging from 200 to 600 nm when the polymer/DNA weight ratio was above 7. The polymer/DNA complexes observed by scanning electron microscopy (SEM) exhibited a compact and spherical morphology. The cytotoxicity assay showed that the synthesized polymers were less toxic than that of PEI(25 K). The gene transfection effect of resulted polymers was evaluated in 293T and HeLa cells, and the results showed that the gene transfection efficiency of these polymers was better than that of chitosan. Moreover, the transfection efficiency was dependent on the length of the oligoamine side chains and the molecular weight of the chitosan derivatives.

Graphical abstractA series of chitosan-based oligoamine polymers was synthesized from N-maleated chitosan (NMC) via Michael addition with diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and linear polyethylenimine (Mn 423), respectively. It was found that a structure difference of oligoamine side chains significantly affected the buffer capacity, cytotoxicity and transfection efficiency.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , ,