Article ID Journal Published Year Pages File Type
1426345 Journal of Controlled Release 2008 7 Pages PDF
Abstract

The use of polybutylene succinate (PBSU)/starch-type composite as biodegradable matrix material for the controlled release of bacterial fertilizer was evaluated. The composites were prepared by a melting-blending method and various methods/instruments were applied to characterize composites and PBSU. The mechanical properties of the PBSU/starch composite were worse than PBSU alone because the former had poor compatibility between starch and the polymer matrix. Much better dispersion and homogeneity were observed in the composite when PBSU was replaced by acrylic acid grafted PBSU (PBSU-g-AA), hence leading to better mechanical properties of PBSU-g-AA/starch. Furthermore, PBSU-g-AA/starch was more easily processed. The bacterial fertilizer was encapsulated in PBSU and PBSU-g-AA/starch matrix. Increased blending of starch increased the biodegradability of matrix and the amount and rate of cell release from matrix suggesting that this composite is a promising candidate material for ‘controlled release’ bacterial fertilizer.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
,