Article ID Journal Published Year Pages File Type
1427306 Journal of Controlled Release 2006 10 Pages PDF
Abstract

In this study, a neurotrophin delivery system based on an inherently conducting polymer (ICP) has been developed. Direct incorporation of neurotrophin-3 (NT-3) was investigated and controlled release was tested under various electrochemical conditions. The loading capacity and amount of NT-3 released from the polymer was determined using 125I-labelled NT-3. Electrochemical stimulation of polypyrrole by pulsed voltage, pulsed current or cyclic voltammetry promoted the release of NT-3 at a greater rate than natural diffusion of NT-3. NT-3 was released from polypyrrole as an initial burst in the first 24 h followed by prolonged release over a subsequent 6 days of sampling. The amount of NT-3 incorporated into the polymer could be controlled by varying the polymerisation time, with longer growth periods incorporating more NT-3. The NT-3 release results indicated that the polymers grown for longer released a lower percentage of the incorporated NT-3 compared to the polymers grown for shorter times. Polymer-based neurotrophin delivery systems have the potential to be incorporated into future treatments for nerve injuries to prevent nerve degradation and promote nerve protection.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , , ,