Article ID Journal Published Year Pages File Type
1427659 Journal of Controlled Release 2006 10 Pages PDF
Abstract

Intraocular drug delivery systems made from biodegradable polymers hold great potential to effectively treat chronic diseases of the posterior segment of the eye. This study is based on the hypothesis that crosslinked poly(propylene fumarate) (PPF)-based matrices are suitable long-term delivery devices for the sustained release of the anti-inflammatory drug fluocinolone acetonide (FA) due to their hydrophobicity and network density. FA-loaded rods of 10 mm length and 0.6 mm diameter were fabricated by photo-crosslinking PPF with N-vinyl pyrrolidone (NVP). The released amounts of FA and NVP were determined by HPLC analysis. The effects of drug loading and the ratio of PPF to NVP on the release kinetics were investigated using a 23-1 factorial design. Overall, FA release was sustained in vitro over almost 400 days by all tested formulations. Low burst release was followed by a dual modality release controlled by diffusion and bulk erosion with release rates up to 1.7 μg/day. The extent of the burst effect and the release kinetics were controlled by the drug loading and the matrix composition. Matrix water content and degradation were determined gravimetrically. Micro-computed tomography was used to image structural and dimensional changes of the devices. The results show that photo-crosslinked PPF-based matrices are promising long-term delivery devices for intraocular drug delivery.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , , , ,