Article ID Journal Published Year Pages File Type
1427935 Materials Science and Engineering: C 2016 13 Pages PDF
Abstract

•Polyester urethane hollow fiber membranes (HFMs) were fabricated and evaluated.•HFM properties varied according to composition.•HFM inner and outer surfaces were successfully seeded with cells.•HFMs showed excellent hemocompatibility in vitro.•HFM has the potential to be used for small diameter vascular grafts.

The design of bioresorbable synthetic small diameter (< 6 mm) vascular grafts (SDVGs) capable of sustaining long-term patency and endothelialization is a daunting challenge in vascular tissue engineering. Here, we synthesized a family of biocompatible and biodegradable polycaprolactone (PCL) urethane macromers to fabricate hollow fiber membranes (HFMs) as SDVG candidates, and characterized their mechanical properties, degradability, hemocompatibility, and endothelial development. The HFMs had smooth surfaces and porous internal structures. Their tensile stiffness ranged from 0.09 to 0.11 N/mm and their maximum tensile force from 0.86 to 1.03 N, with minimum failure strains of approximately 130%. Permeability varied from 1 to 14 × 10− 6 cm/s, burst pressures from 1158 to 1468 mm Hg, and compliance from 0.52 to 1.48%/100 mm Hg. The suture retention forces ranged from 0.55 to 0.81 N. HFMs had slow degradation profiles, with 15 to 30% degradation after 8 weeks. Human endothelial cells proliferated well on the HFMs, creating stable cell layer coverage. Hemocompatibility studies demonstrated low hemolysis (< 2%), platelet activation, and protein adsorption. There were no significant differences in the hemocompatibility of HFMs in the absence and presence of endothelial layers. These encouraging results suggest great promise of our newly developed materials and biodegradable elastomeric HFMs as SDVG candidates.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,