Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1428409 | Materials Science and Engineering: C | 2015 | 6 Pages |
•Potential applications of phaeophytin-b•Low-cost method to produce sensitive nanostructured films•Electrochemical sensor based on phaeophytin-b and cashew gum
This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H2O2) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H2O2. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H2O2.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide