Article ID Journal Published Year Pages File Type
1429385 Materials Science and Engineering: C 2013 12 Pages PDF
Abstract

Biodegradable metals offer great potential in circumventing the long-term risks and side effects of medical implants. Austenitic FeMnCPd alloys feature a well-balanced combination of high strength and considerable ductility which make them attractive for use as degradable implant material. The focus of this study is the evaluation of the degradation performance of these alloys by means of immersion testing and electrochemical impedance spectroscopy in simulated body fluid. The FeMnCPd alloys are characterized by an increased degradation rate compared to pure Fe, as revealed by both techniques. Electrochemical measurements turned out to be a sensitive tool for investigating the degradation behavior. They not only show that the polarization resistance is a measure of corrosion tendency, but also provide information on the evolution of the degradation product layers. The mass loss data from immersion tests indicate a decreasing degradation rate for longer times due to the formation of degradation products on the sample surfaces. The results are discussed in detail in terms of the degradation mechanism of Fe-based alloys in physiological media.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► We investigate the degradation behavior of biodegradable FeMnC(Pd) alloys. ► The FeMnCPd alloys feature an increased degradation rate compared to pure Fe. ► Impedance spectroscopy is a sensitive tool to assess the degradation behavior. ► A degradation mechanism for Fe-based alloys in simulated body fluid is proposed.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,