Article ID Journal Published Year Pages File Type
1430006 Materials Science and Engineering: C 2010 8 Pages PDF
Abstract

Our strategy is to design and fabricate biomimetic and bioactive scaffolds that resemble the native extracellular matrix as closely as possible so as to create conducive living milieu that will induce cell to function naturally. In the present study, gelatin/siloxane (GS) hybrids were prepared by a sol–gel processing, and electrospinning technique was used to fabricate GS fibrous mats to support the growth of bone marrow-derived mesenchymal stem cells (BMSCs) for tissue engineering of bone. The results indicate that the porous structure and fiber size of the GS fibrous mats can be fine tuned by varying the viscosity of GS precursor solution. Additionally, the Ca2+-containing GS fibrous mats biomimetically deposited apatite in a simulated body fluid (SBF), as well as stimulating its BMSCs proliferation and differentiation in vitro, thereby dignifying its in vitro bioactivity.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , ,