Article ID Journal Published Year Pages File Type
1430360 Materials Science and Engineering: C 2009 8 Pages PDF
Abstract

The purpose of this study was the development and characterization of wheat gluten microspheres for use as controlled release devices, and the evaluation of the effect of the addition of poly (ethylene glycol) (PEG). Diltiazem hydrochloride was used as the model drug in the in vitro release essay. The physical–chemical and morphological properties of the microspheres were evaluated, as well as their encapsulation efficiency. Porosity varied with the presence or absence of PEG. The diltiazem encapsulation efficiency was 72.8% and 96.7% for wheat gluten and gluten/PEG 95/05 microspheres, respectively. The DSC and FTIR results indicated interactions between the microparticles and additives used. In the in vitro release tests it was observed that, for all the studied systems, the burst effect occurred in the first 2 h of release and the microspheres prepared with PEG had a faster release rate. In the attempt to elucidate the release mechanism, the systems were treated based on two well known mathematical models: the Higuchi and the power law. It was found that the microsphere release mechanism is not exclusively diffusion-controlled and, probably, the release occurs through a combination of partial diffusion through the swelling matrix and hydrophilic pores.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , ,