Article ID Journal Published Year Pages File Type
1431176 Materials Science and Engineering: C 2008 10 Pages PDF
Abstract

The formation of Annexin-A5 decorated (bio-functionalized) nanoparticles is of particular interest in micelle-mediated target drug delivery, in vivo magnetic resonance imaging, and controlled fabrication of biochips. This work describes an easy access to the synthesis and manipulation of block copolymer nano-objects exhibiting Annexin-A5 protein binding ability. Well-defined spherical micelles containing negatively charged phosphonic diacid groups – which are potential binding sites for Annexin-A5 proteins – at their hydrophilic periphery originate from the self-assembly of polystyrene-b-poly(2-phosphatethyl methacrylate-stat-2-hydroxyethyl methacrylate) (PS-b-P(PEMA-stat-HEMA)) amphiphilic macromolecules in aqueous media. PS-b-P(PEMA-stat-HEMA) can be prepared in a three-step phosphorylation/silylation/methanolysis procedure applied to PS-b-PHEMA precursors synthesized via Atom Transfer Radical Polymerization (ATRP). The herein discussed approach allows precise control over micellar dimensions and properties such as core radius (i.e., loading capacity), corona width, and density of phosphate groups at the micelle periphery.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , ,