Article ID Journal Published Year Pages File Type
1431213 Materials Science and Engineering: C 2008 4 Pages PDF
Abstract

Nanophase hydroxyapatite (HAp) particles were aged in 0–2.5 wt.% chitosan acetate solutions for 30 days to evaluate the influence of chitosan on HAp surface chemistry. The HAp characterization results from Fourier transform infra-red spectroscopy (FTIR), thermal gravimetric analysis (TGA), Carbon–Hydrogen–Nitrogen (CHN) analysis, and BET N2 adsorption revealed measurable changes in the HAp surface chemistry after aging in the chitosan acetate solutions. The TGA mass loss exhibited by HAp increased from 3.3–6.5 mass% as the chitosan acetate gel concentration increased from 0–2.5 mass%. The CHN analysis revealed an increase in C and H contents with increasing chitosan acetate concentration while the N concentration remained relatively constant (0.30–0.32 mass%). Chitosan interactions with HAp caused an increase in specific surface area from 85 m2/g up to 160 m2/g for HAp aged in 1.5 mass% chitosan acetate solution (HAp[1.5]). Chitosan exhibits strong adsorption interactions with HAp and enhances colloid stability for processing of chitosan/hydroxyapatite nanocomposites.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, ,