Article ID Journal Published Year Pages File Type
1441570 Synthetic Metals 2010 8 Pages PDF
Abstract

A series of novel electro-active conjugated polymers containing 2,5-dialkyl-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-diones (DPPs) and 3,4-dihydro-3,3-dialkyl-2H-thieno[3,4-b][1,4]dioxepines (dialkyl-ProDOTs) were synthesized using Stille coupling reaction in presence of CuO. The molecular weights of the synthesized polymers were found to be in the range of 18,000–45,000. Incorporation of the electron deficient DPP units and the electron rich dialkyl-ProDOT units in the conjugated backbone leads to low band gap polymers. All the polymers were found to be highly soluble in most chlorinated organic solvents as well THF and toluene with excellent film forming properties. From the UV–vis spectra, the band gap of the polymers was determined as 1.40–1.42 eV which is lower than the poly(dialkylProDOT)s. From the electrochemical study, highest occupied molecular orbital (HOMO) energy levels of the synthesized polymers were found to be in the range of 5.54–5.51 eV. Because of such high HOMO level, the resulting polymers were found to be more oxidatively stable. Polymers are thermally stable till 325–346 °C with only 5% weight loss which was confirmed from thermogravimetric analysis (TGA). The polymers were found to be moderately conducting with maximum conductivity up to 0.2–6.0 S/cm.

Graphical abstractThe synthesis of high molecular weight polymers containing diketopyrrolopyrrole units and dialkylProDOT units has been carried out. The resultant polymers were found to be low band gap, highly stable and excellent film forming properties. A maximum conductivity of 0.2–6 S/cm was obtained from this set of polymers.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , ,