Article ID Journal Published Year Pages File Type
1441911 Synthetic Metals 2012 11 Pages PDF
Abstract

Selected acenes, cyclic acenes and model zigzag (4,0) single wall carbon nanotubes (SWCNTs) with one hydroxylic group at the open end were fully optimized at the B3LYP/6-31G* level of theory. The impact of molecule size on the B3LYP/pcS-2 calculated 13C NMR chemical shifts was studied to characterize pristine and tip-monofunctionalized ultra narrow SWCNTs. The harmonic frequency of Raman radial breathing mode (RBM) was determined for monohydroxylated cyclic acenes and correlated with their diameter. A regular convergence of selected CC bond lengths, RBM frequency and carbon chemical shifts upon increasing the size of the systems was observed and fitted toward very large systems with two-parameter mathematical formula. The observed values of selected structural, Raman and 13C NMR chemical shifts in the studied models point out toward a feasibility of NMR technique as a tool for characterization of pristine and OH functionalized SWCNT materials.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Selected acenes, cyclacenes and zigzag (4,0) single wall carbon nanotubes (SWCNTs). ► OH functionalized at one end optimized using B3LYP/6-31G*. ► The impact of model molecule size on 13C NMR chemical shifts. ► The harmonic frequency of Raman radial breathing mode (RBM). ► RBM in monohydroxylated cyclic acenes correlated with their diameter.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,