Article ID Journal Published Year Pages File Type
1442720 Synthetic Metals 2010 7 Pages PDF
Abstract

In this paper, a new fluoranthene-based unsymmetrical organic cyanine dye I and the corresponding cyanine dye II containing ethynyl unit for the purpose of comparison were designed and synthesized as sensitizers for the application in dye-sensitized solar cells (DSSCs). The absorption spectra, electrochemical and photovoltaic properties of I and II were extensively investigated. The DSSCs based on the fluoranthene dye I showed the better photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 67%, a short-circuit photocurrent density (Jsc) of 7.83 mA cm−2, an open-circuit photovoltage (Voc) of 0.476 V, and a fill factor (ff) of 0.63, corresponding to an overall conversion efficiency of 2.34% under simulated AM 1.5G solar light condition. Also, the effects of chenodeoxycholic acid (CDCA) in a solution as a co-adsorbate on the photovoltaic performance of DSSCs based on cyanine dyes were also investigated. The presence of CDCA for 0.5 h, increases both the photovoltage and photocurrent of the DSSC incorporating I, in which the photovoltage and photocurrent increase 9.3% and 20%, respectively. The above photovoltaic results indicate that coadsorption of appropriate amount CDCA is effective to improve solar cell performance.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,