Article ID Journal Published Year Pages File Type
1442999 Synthetic Metals 2008 6 Pages PDF
Abstract

Functionalized multi-walled carbon nanotubes (F-MWNTs) were blended with cellulose solution to fabricate F-MWNTs/cellulose electro-active paper (EAPap) actuators. Cellulose was dissolved in LiCl/N,N-dimethylacetamide (DMAc) solution by solvent exchange process and blended with F-MWNTs to make F-MWNTs/cellulose EAPap actuators. Their characteristics were investigated by taking X-ray diffractometer (XRD), SEM, Young's modulus measurement and water retention measurement. Actuator performance of F-MWNT/cellulose EAPap was evaluated in terms of bending displacement, resonance frequency, output force and electrical power consumption. A large bending displacement of 4.5 mm and improved output force of the actuator were obtained. The actuation principle of cellulose EAPap was more likely based on ion migration effect, especially in humid condition. More explanation about the characteristics, actuation principle and performance of actuator is introduced.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, ,