Article ID Journal Published Year Pages File Type
1443367 Synthetic Metals 2009 5 Pages PDF
Abstract

In this paper, we study the effect of self-assembled monolayers (SAMs) on the electric behavior of organic diodes based on sexithiophene (6T) sandwiched between indium tin oxide (ITO) and aluminum. We have used molecules of SAMs based on a thiol with functional groups of oligothiophene (3T(CH2)6SH). Wettability measurements have been performed to characterize ITO surface energy and its modification upon deposition of SAMs. The results of contact angle measurements and surface energies demonstrate the homogeneity and rigidity of grafting surface. The current vs. applied voltage characteristics of devices show that conduction in weak biasing follow Richardson–Schottky behavior. Beyond 1.5 V, J–V characteristics can be successfully modeled by space-charge limited current (SCLC) theory followed by a trap charge limited current (TCLC). The electrical as well as optical characteristics of 6T layer are clearly affected by the presence of the SAM. The differences between ITO/SAM and bare ITO samples are interpreted in terms of structural effect induced by the self-assembled monolayer of 3T(CH2)6SH.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , ,