Article ID Journal Published Year Pages File Type
1443432 Synthetic Metals 2007 8 Pages PDF
Abstract
Electrically conductive polymers, such as polypyrrole (PPy), show promise for modifying the dimensions and properties of micro- and nanoscale structures. Mechanisms for controlling the formation of PPy films of nanoscale thickness were evaluated by electrochemically synthesizing and examining PPy films on planar gold electrodes under a variety of growth conditions. Tunable PPy coatings were then deposited by electropolymerization on the sidewalls of individual, electrically addressable carbon nanofibers (CNFs). The ability to modify the physical size of specific nanofibers in controllable fashion is demonstrated. The biocompatibility, potential for chemical functionalization, and ability to effect volume changes of this nanocomposite can lead to advanced functionality, such as specific, nanoscale valving of materials and morphological control at the nanoscale.
Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , ,