Article ID Journal Published Year Pages File Type
1443513 Synthetic Metals 2007 5 Pages PDF
Abstract

The insertion layer of cadmium sulfide (CdS) between polymer–fullerene blend and Al electrode is used to enhance the short-circuit current (Isc) and the power conversion efficiency (PCE). The solar cells based on the blend of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and C60 with the function layer of CdS (∼10 nm) shows the open-circuit voltage (Voc) of ∼0.7 V, short-circuit current (Isc) of ∼4.6 mA/cm2, filling factor (FF) of ∼0.28, and the power conversion efficiency (PCE) of ∼5.3% under monochromatic light (532 nm) photoexcitation of about 16.7 mW/cm2. Compared to cells without the CdS layer, the power conversion efficiency increases about an order of magnitude. The thickness of CdS layer was varied from 10 to 40 nm using e-beam deposition, and we obtained optimum current density–voltage characteristics for 10 nm thick CdS layer.

Related Topics
Physical Sciences and Engineering Materials Science Biomaterials
Authors
, , , , , , ,