Article ID Journal Published Year Pages File Type
144479 Advanced Powder Technology 2015 7 Pages PDF
Abstract

Single-phase, high-purity nanosized LiMn2O4 powders, which are employed as cathode materials for lithium-ion batteries, were produced by solution combustion synthesis using glycine, sucrose, and nitrate, followed by calcination. Phase structure and morphology of the powders were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performance was measured by galvanostatic charge–discharge cycling in a voltage range of 3.2–4.4 V. The analysis of yield, morphology, and electrochemical performance mainly focused on the influence of different glycine/sucrose ratios. Compared to the sample obtained using 100% glycine, the yields of powders obtained by adding sucrose to the fuel were remarkably improved, from around 50% to over 90%. The highest discharge capacity at 1 C was obtained for the sample with 2% added sucrose, which retained a capacity of 116.6 mAh/g after 80 cycles.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,