Article ID Journal Published Year Pages File Type
1445592 Acta Materialia 2014 8 Pages PDF
Abstract

The mechanical behavior of pure rhenium was investigated using uniaxial compression tests, transmission electron microscopy and electron backscatter diffraction characterization. The plasticity was characterized by a large amount of twin formation and propagation, including twin transmission across grain boundaries. In-depth analysis of the interactions of {112¯1}〈1¯1¯26〉 twins with grain boundaries found that grain boundaries with misorientation angles below ∼25° allowed twin transmission, while grain boundaries with higher angles did not. Similar to dislocation interactions with grain boundaries, twin transmission was largely dictated by the minimization of the angle between the shear vectors of the incoming and outgoing twins.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,