Article ID Journal Published Year Pages File Type
1445668 Acta Materialia 2014 11 Pages PDF
Abstract

Micrometer-sized compression pillars containing a grain boundary are investigated to better understand under which conditions grain boundaries have a strengthening effect. The compression experiments were performed on focused ion beam fabricated micrometer-sized bicrystalline Cu pillars including either a large-angle grain boundary (LAGB) or a coherent twin boundary (CTB) parallel to the compression axis and additionally on single-crystalline reference samples. Pillars containing a LAGB show increased strength, stronger hardening and smaller load drops compared to single crystals and exhibit a bent boundary and pillar shape. Samples with a CTB show no major difference in stress–strain data compared to the corresponding single-crystalline samples. This is due to the special orientation and symmetry of the twin boundary and is reflected in a characteristic pillar shape after deformation. The experimental findings can be related to the dislocation–boundary interactions at the different grain boundaries and are compared with three-dimensional discrete dislocation dynamics simulations.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (60 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,