Article ID Journal Published Year Pages File Type
1445731 Acta Materialia 2013 13 Pages PDF
Abstract

We report in situ transmission electron microscopy observations of the 180° polarization switching process of a PbZr0.2Ti0.8O3 (PZT) capacitor. The preferential, but asymmetric, nucleation and forward growth of switched c-domains were observed at the PZT/electrode interfaces, arising due to the built-in electric field induced at each interface. The subsequent sideways growth of the switched domains was inhibited by the depolarization field due to the imperfect charge compensation at the counter-electrode and also at the boundaries with preexisting a-domains, which contributed further to the asymmetric switching behavior. It was found that the preexisting a-domains split into fine a- and c-domains constituting a 90° stripe domain pattern during the 180° polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , , ,