Article ID Journal Published Year Pages File Type
1445927 Acta Materialia 2014 8 Pages PDF
Abstract

Solid–solid (SS)(SS) phase transformations via nanometer-size intermediate melts (IMs)(IMs) within the SS interface, hundreds of degrees below melting temperature, were predicted thermodynamically and are consistent with experiments for various materials. A necessary condition for the appearance of IMs, using a sharp interface approach, was that the ratio of the energies of SS   and solid–melt (SM)(SM) interfaces, kEkE, were >2. Here, an advanced phase-field approach coupled with mechanics is developed that reveals various new scale and interaction effects and phenomena. Various types of IM are found: (i) continuous and reversible premelting and melting; (ii) jump-like barrierless transformation to IMs  , which can be kept at much lower temperature even for kE<2kE<2; (iii) unstable IMs, i.e. a critical nucleus between the SS interface and the IM. A surprising scale effect related to the ratio of widths of SS and SM interfaces is found: it suppresses barrierless IMs but allows IMs   to be kept at much lower temperatures even for kE<2kE<2. Relaxation of elastic stresses strongly promotes IMs  , which can appear even at kE<2kE<2 and be retained at kE=1kE=1. The theory developed here can be tailored for diffusive phase transformations, formation of intergranular and interfacial phases, and surface-induced phase transformations.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,