Article ID Journal Published Year Pages File Type
1446453 Acta Materialia 2012 10 Pages PDF
Abstract

The evolution of structure and thermal conductivity (k) has been studied for a range of Y–La2Zr2O7 solid solutions. Within the pyrochlore range (x < 0.40) Y3+ solely substitutes for La3+ below a critical composition factor (x = 0.15), above which it substitutes for both La3+ and the Zr4+. A glass-like k, approaching the amorphous limit, is observed within a certain composition range (0.20 ⩽ x < 0.40). The glass-like k behaviour is attributed to a phonon localization effect that arises from small and weakly bound Y3+ cations (rattlers) oscillating locally and independently in oversized anionic cages [(La/Y)O8]. The ultralow and glassy k makes Y3+-doped La2Zr2O7 pyrochlores promising candidate materials for high temperature thermal barrier coating topcoats.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,