Article ID Journal Published Year Pages File Type
1446639 Acta Materialia 2012 11 Pages PDF
Abstract

The early stage of chromium precipitation in copper was analyzed at the atomic scale by atom probe tomography (APT). Quantitative data about the precipitate size, three-dimensional shape, density, composition and volume fraction were obtained in a Cu–1Cr–0.1Zr (wt.%) commercial alloy aged at 713 K. Surprisingly, nanoscaled precipitates exhibit various shapes (spherical, plates and ellipsoid) and contain a large amount of Cu (up to 50%), in contradiction to the equilibrium Cu–Cr phase diagram. APT data also show that some impurities (Fe) may segregate along Cu/Cr interfaces. The concomitant evolution of the precipitate shape and composition as a function of the aging time is discussed. Special emphasis is given to the competition between interfacial and elastic energy, and to the role of Fe segregation.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,