Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1446639 | Acta Materialia | 2012 | 11 Pages |
The early stage of chromium precipitation in copper was analyzed at the atomic scale by atom probe tomography (APT). Quantitative data about the precipitate size, three-dimensional shape, density, composition and volume fraction were obtained in a Cu–1Cr–0.1Zr (wt.%) commercial alloy aged at 713 K. Surprisingly, nanoscaled precipitates exhibit various shapes (spherical, plates and ellipsoid) and contain a large amount of Cu (up to 50%), in contradiction to the equilibrium Cu–Cr phase diagram. APT data also show that some impurities (Fe) may segregate along Cu/Cr interfaces. The concomitant evolution of the precipitate shape and composition as a function of the aging time is discussed. Special emphasis is given to the competition between interfacial and elastic energy, and to the role of Fe segregation.