Article ID Journal Published Year Pages File Type
1446658 Acta Materialia 2012 10 Pages PDF
Abstract

The plastic flow field produced by machining is utilized to access a range of deformation parameters in pure copper: strains of 1–7, strain rates of 1–1000 s−1 and temperatures as low as 77 K. The strength and stability of the severe plastic deformation microstructures including cellular, elongated, equiaxed and twinned types are characterized. Unique combinations of strengthening and stability are identified in the case of heavily twinned microstructures. These observations offer insights for improving the stability of both single-phase and multicomponent ultrafine-grained alloys.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,