Article ID Journal Published Year Pages File Type
1446691 Acta Materialia 2012 9 Pages PDF
Abstract

The lamellar microstructure of TiAl–Nb alloys with and without low boron additions is controlled using double directional solidification (DS). In alloys without the addition of boron, the β phase is seeded during double DS. Complete peritectic transformation occurs in both the dendritic and interdendritic regions, which can lead to the successful alignment of both the high-temperature α phase and the lamellar microstructures. Well-aligned lamellar microstructures can be easily achieved if the alloy composition is close to the peritectic point on the hypo-peritectic side. In alloys with low boron additions, however, the competitive growth of the α phase breaks the continuity of the lamellar microstructure in the region ahead of stable growth, which finally results in columnar grain coarsening and unsuccessful alignment of the lamellar microstructures.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,