Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1446727 | Acta Materialia | 2012 | 12 Pages |
Abstract
Jerky flow in dilute alloys, or the Portevin-Le Chatelier effect, is investigated using statistical analysis of time series characterizing the evolution of the plastic activity at distinct scales of observation, namely, the macroscopic scale of stress serrations and a mesoscopic scale pertaining to the accompanying acoustic emission. Whereas the stress serrations display various types of statistical distributions depending on the driving strain rate, including power-law, peaked and bimodal histograms, it is found that acoustic emission is characterized by power-law statistics of event size in all experimental conditions. The latter reflect intermittency and self-organization of plastic activity at a mesoscopic scale. This shift in the observed dynamics when the observation length scale is decreased is discussed in terms of the synchronization of small-scale events.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T.A. Lebedkina, I.V. Shashkov,