Article ID Journal Published Year Pages File Type
1446948 Acta Materialia 2012 10 Pages PDF
Abstract

For the emerging bulk metallic glasses (BMGs), damage tolerance is a key mechanical property needed for their practical applications. To reach a fracture toughness on a par with, or even better than, conventional engineering alloys, the only route reported so far is to compositionally base the BMG on high-cost palladium (Pd), which has a very high Poisson’s ratio (∼0.42). Here we report the discovery of a Zr61Ti2Cu25Al12 (ZT1) BMG that has a toughness as high as the Pd-based BMG, but at the same time consists of common engineering metals and has robust glass-forming ability. The new BMG, while having an unimpressive Poisson’s ratio of 0.367, derives its high toughness from its high propensity for crack deflection and local loading-mode change at the crack tip due to extensive shear band interactions. The crack-resistance curve (R-curve) of this BMG has been obtained from fatigue pre-crack samples, employing standard “single-specimen” and “multiple-specimen” techniques.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,