Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1446949 | Acta Materialia | 2012 | 10 Pages |
We introduce a new experimental approach to the compositional and thermo-mechanical design and rapid maturation of bulk structural materials. This method, termed rapid alloy prototyping (RAP), is based on semi-continuous high throughput bulk casting, rolling, heat treatment and sample preparation techniques. 45 Material conditions, i.e. 5 alloys with systematically varied compositions, each modified by 9 different ageing treatments, were produced and investigated within 35 h. This accelerated screening of the tensile, hardness and microstructural properties as a function of chemical and thermo-mechanical parameters allows the highly efficient and knowledge-based design of bulk structural alloys. The efficiency of the approach was demonstrated on a group of Fe–30Mn–1.2C–xAl steels which exhibit a wide spectrum of structural and mechanical characteristics, depending on the respective Al concentration. High amounts of Al addition (>8 wt.%) resulted in pronounced strengthening, while low concentrations (<2 wt.%) led to embrittlement of the material during ageing.