Article ID Journal Published Year Pages File Type
1447015 Acta Materialia 2011 10 Pages PDF
Abstract

In situ monitoring of the initial transient of directional solidification was carried out by means of synchrotron X-ray radiography. Experiments with Al–4 wt.% Cu alloy samples were performed on beamline ID19 of the European Synchrotron Radiation Facility (ESRF) in a dedicated Bridgman-type furnace. X-ray radiography enabled a detailed analysis of the evolution over time of the solid–liquid interface macroscopic shape in interaction with convection in the melt. Lateral solute segregation induced by fluid flow resulted in a significant deformation of the solid–liquid interface. The time-dependent velocity of the solidification front was determined at different abscissa values along the curved interface during the solidification process, from the growth phase with a smooth interface to the onset of morphological instability. Further, using a novel quantitative image analysis technique we were able to measure longitudinal solute profiles in the melt during the initial transient. Solutal length was then deduced as well as concentration in the melt, both at the interface and far away from it. The influence of convection on growth velocity and the characteristic parameters of the solute boundary layer are discussed, and a comparison with the Warren and Langer model is also presented.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,