Article ID Journal Published Year Pages File Type
144712 Advanced Powder Technology 2011 6 Pages PDF
Abstract

A mathematical model has been developed to predict performance of a continuous entrained-bed and bubbling fluidized-bed hot gas desulfurization system in IGCC. The model combines the particle residence time with the kinetic rate in each reactor. The model has been applied to the KIER’s laboratory scale fluidized bed process. The present model provided a reasonable fit in predicting experimental results that the outlet concentration of H2S from the desulfurizer and SO2 from the regenerator increased nearly proportionally to the inlet concentration of H2S to the desulfurizer. The model also could predict well the outlet concentration of O2 from the regenerator to decrease as the inlet concentration of H2S to the desulfurizer increased. The present model predicted with reasonable accuracy mean diameter of bed particles and sulfur content of particles in desulfurizer and regenerator.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,