Article ID Journal Published Year Pages File Type
1447245 Acta Materialia 2011 9 Pages PDF
Abstract

Microstructural evolution in a high-Cu-content Ti50.2Ni30Cu19.8 shape-memory thin film deformed in the B19 martensite state was studied by transmission electron microscopy, and the deformation mechanisms were clarified. The thin film was prepared by magnetron sputtering deposition. In the undeformed film, the B19 martensite has mainly {0 1 1}B19 twins with a small number of {1 1 1}B19 twins. The tensile deformation involves a reorientation of the {0 1 1}B19 twin domains, de-twinning of the {0 1 1}B19 and {1 1 1}B19 twins, and a stress-induced B19–B19′ transformation with the production of (0 0 1)B19′ compound twins. The film shows a large recoverable strain of 5.5%, which is far beyond the stress plateau.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,