Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1447423 | Acta Materialia | 2011 | 10 Pages |
When a martensitic shape memory alloy is deformed, the reverse transformation occurs at higher temperature than that of undeformed martensite. This is a typical case of the stabilization effect of martensite that is commonly observed in shape memory alloys. Regarding previous results measured by electric resistance and/or dilatometoric methods in NiTi and CuAlNi shape memory alloys, this study has performed calorimetric measurement in these alloys in order to re-examine the stabilization effect in terms of thermodynamics. Experimental evidence for appreciable changes in the reverse transformation temperature due to variant change of the martensite is presented. The elastic energy stored in the deformed martensite and the irreversible energy dissipated during the reverse transformation are estimated from the transformation temperatures, the stress–strain curves of the martensite and the latent heat of transformation. The temperatures of the reverse martensitic transformation have been related to these energies in explicit form.