Article ID Journal Published Year Pages File Type
1447594 Acta Materialia 2010 12 Pages PDF
Abstract

Metal matrix composites (MMCs) have a combination of high strength, high stiffness, and low density. The damage behavior of MMCs has been studied extensively by a combination of traditional mechanical testing, microstructural characterization, and post-experiment fractographic analysis. X-ray tomography is an excellent technique that eliminates destructive cross-sectioning, and allows for superior resolution and image quality with minimal sample preparation. In this work, we have carried out a detailed investigation of the damage behavior of SiC particle reinforced 2080 Al alloy matrix composites by X-ray synchrotron tomography. This work is unique, relative to the existing work in the literature, because it: (a) focuses on a technologically relevant MMC system (2080/SiCp), (b) uses a combination of image analysis techniques to enable visualization and damage characterization, and (c) entails a significant amount of quantitative and statistical analyses of particle fracture and void growth in the composite. A statistically significant number of particles and volume of the composite were characterized, enabling a meaningful and realistic interpretation of the results. Based on this, a detailed understanding of the micromechanisms of fracture and the quantitative influence of particle size and aspect ratio were obtained.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,