Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1447660 | Acta Materialia | 2011 | 12 Pages |
Ambient- and high-temperature precipitation strengthening are investigated in Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys. Following solidification, Sc is concentrated at the dendrite peripheries while Zr is segregated at the dendrite cores. During isochronal aging, precipitation of Al3Sc (L12) commences between 250 and 300 °C for Al–0.06Sc, and reaches a 429 MPa peak microhardness at 325 °C. For Al–0.06Zr, precipitation of Al3Zr (L12) first occurs between 400 and 425 °C and reaches a 295 MPa peak microhardness at 475 °C. A pronounced synergistic effect is observed when both Sc and Zr are present. Above 325 °C, Zr additions provide a secondary strength increase that is attributed to precipitation of Zr-enriched outer shells onto the Al3Sc precipitates, leading to a peak microhardness of 618 MPa at 400 °C for Al–0.06Sc–0.06Zr. Upon compressive creep deformation at 300–400 °C, Al–0.06Sc–0.06Zr exhibits threshold stresses of 7–12 MPa; these values may be further improved by optimal heat-treatments.