Article ID Journal Published Year Pages File Type
1447735 Acta Materialia 2010 12 Pages PDF
Abstract

The influence of a crystallographic symmetry break on the morphology of precipitates during the coherent precipitation of a trigonal phase in a close-packed hexagonal matrix is analyzed. It is pointed out that in spite of the isotropy of the stress-free strain of the precipitate in the basal plane, the existence of an extra elastic constant in the precipitate (associated to the loss of symmetry) induces a morphological evolution from a shape having a symmetry of revolution around the threefold axis to a needle-like one oriented along the compact directions in the basal plane. These general considerations are applied to the case of zirconium hydrides, the crystallography of which has recently been identified to be coherent with that of the αZr matrix.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,