Article ID Journal Published Year Pages File Type
1447751 Acta Materialia 2010 12 Pages PDF
Abstract

Convection during directional solidification can cause defects such as freckles and misoriented grains. To gain a better understanding of conditions associated with the onset of convective instabilities, flow was investigated using three-dimensional (3D) computational fluid dynamics simulations in an experimentally obtained dendritic network. A serial-sectioned, 3D data set of directionally solidified nickel-base superalloy measuring 2.3 × 2.3 × 1.5 mm was used to determine the permeability for flow parallel and normal to the solidification direction as a function of solid fraction (fS). Anisotropy of permeability varies significantly from 0.4 < fS < 0.6. High flow velocity channels exhibit spacings commensurate with primary dendrite arms at the base of the mushy zone but rapidly increase by a factor of three to four towards dendrite tips. Permeability is strongly dependent on interfacial surface area, which reaches a maximum at fS = 0.65. Results from the 3D simulation are also compared with empirical permeability models, and the microstructural origins of departures from these models are discussed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,